A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On interpolation free disks of polynomials converging maximally to power series

Volume 134 / 2025

Hans-Peter Blatt Annales Polonici Mathematici 134 (2025), 35-48 MSC: Primary 30E10; Secondary 41A05, 41A10 DOI: 10.4064/ap241211-10-5 Published online: 23 June 2025

Abstract

We construct a power series $f$ with radius $R$ of convergence, $0 \lt R \lt \infty $, such that for any $\sigma $, $0 \lt \sigma \lt R$, there exists a subset $\Lambda \subset \mathbb N$, a parameter $r_\sigma $, $0 \lt r_\sigma \lt \sigma $, and a sequence $\{p_n\}_{n\in \mathbb N}$ of polynomials converging maximally to $f$ on the disk $$ \overline {D}_{r_\sigma }=\{z \in \mathbb C: |z| \leq r_\sigma \}$$ such that $p_n$ has no points of interpolation to $f$ on $\overline{D}_\sigma $ for $n\in \Lambda $.

Authors

  • Hans-Peter BlattMathematisch-Geographische Fakultät
    Katholische Universität Eichstätt-Ingolstadt
    85071 Eichstätt, Germany
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image