Convolution of radius functions on ℝ³

Volume 60 / 1994

Konstanty Holly Annales Polonici Mathematici 60 (1994), 1-32 DOI: 10.4064/ap-60-1-1-32

Abstract

We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary layer.

Authors

  • Konstanty Holly

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image