Applications of the Carathéodory theorem to PDEs

Volume 73 / 2000

Konstanty Holly, Joanna Orewczyk Annales Polonici Mathematici 73 (2000), 1-27 DOI: 10.4064/ap-73-1-1-27


We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE $ẋ {(*)\over=} ℱ(t,x)$ for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases "dom ℱ is open" and "dom ℱ = ℐ × Ω for some Ω ⊂ X". We show how to use the theorems mentioned above to get approximate solutions of a nonlinear parabolic PDE and exact solutions of a linear evolution PDE with distribution data.


  • Konstanty Holly
  • Joanna Orewczyk

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image