A quasistatic contact problem with adhesion and friction for viscoelastic materials

Volume 37 / 2010

Arezki Touzaline Applicationes Mathematicae 37 (2010), 39-52 MSC: 47J20, 49J40, 74M10, 74M15. DOI: 10.4064/am37-1-3


We consider a mathematical model which describes the contact between a deformable body and a foundation. The contact is frictional and is modelled by a version of normal compliance condition and the associated Coulomb's law of dry friction in which adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behaviour is modelled by a nonlinear viscoelastic constitutive law. We derive a variational formulation of the mechanical problem and prove the existence and uniqueness of a weak solution if the friction coefficient is sufficiently small. The proof is based on time-dependent variational inequalities, differential equations and the Banach fixed point theorem.


  • Arezki TouzalineLaboratoire de Systèmes Dynamiques
    Faculté de Mathématiques, USTHB
    BP 32 El Alia
    Bab-Ezzouar, 16111, Algeria

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image