Łojasiewicz Exponent of Overdetermined Mappings

Volume 61 / 2013

Stanisław Spodzieja, Anna Szlachcińska Bulletin Polish Acad. Sci. Math. 61 (2013), 27-34 MSC: 14P20, 14P10, 32C07. DOI: 10.4064/ba61-1-4

Abstract

A mapping $F:\mathbb{R}^n\to\mathbb{R}^m$ is called overdetermined if $m>n$. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping $F:\mathbb{R}^n\to \mathbb{R}^m$ can be reduced to the case $m=n$.

Authors

  • Stanisław SpodziejaFaculty of Mathematics and Computer Science
    University of Łódź
    Banacha 22
    90-238 Łódź, Poland
    e-mail
  • Anna SzlachcińskaFaculty of Mathematics and Computer Science
    University of Łódź
    Banacha 22
    90-238 Łódź, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image