PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The deformation quantisation mappingof Poisson to associative structuresin field theory

Volume 113 / 2017

Arthemy V. Kiselev Banach Center Publications 113 (2017), 219-242 MSC: Primary 53D55, 58E30, 81S10;Secondary 53D17, 58Z05, 70S20. DOI: 10.4064/bc113-0-12

Abstract

Let $\{{\cdot},{\cdot}\}_{{\boldsymbol{\mathcal{P}}}}$ be a variational Poisson bracket in a field model on an affine bundle $\pi$ over an affine base manifold $M^m$. Denote by $\times$ the commutative associative multiplication in the Poisson algebra $\boldsymbol{\mathcal{A}}$ of local functionals $\Gamma(\pi)\to\Bbbk$ that take field configurations to numbers. By applying the techniques from geometry of iterated variations, we make well defined the deformation quantization map ${\times}\mapsto{\star}={\times}+\hbar\,\{{\cdot},{\cdot}\}_{{\boldsymbol{\mathcal{P}}}}+\bar{o}(\hbar)$ that produces a noncommutative $\Bbbk[[\hbar]]$-linear star-product $\star$ in $\boldsymbol{\mathcal{A}}$.

Authors

  • Arthemy V. KiselevJohann Bernoulli Institute for Mathematics and Computer Science
    University of Groningen
    P.O. Box 407
    9700 AK Groningen, The Netherlands
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image