A classification of projectors

Volume 67 / 2005

Gustavo Corach, Alejandra Maestripieri, Demetrio Stojanoff Banach Center Publications 67 (2005), 145-160 MSC: 47A64, 47A07, 46C99. DOI: 10.4064/bc67-0-12

Abstract

A positive operator $A$ and a closed subspace $\cal S$ of a Hilbert space $\cal H$ are called compatible if there exists a projector $Q$ onto $\cal S$ such that $AQ=Q^*A$. Compatibility is shown to depend on the existence of certain decompositions of $\cal H$ and the ranges of $A$ and $A^{1/2}$. It also depends on a certain angle between $A({\cal S})$ and the orthogonal of $\cal S$.

Authors

  • Gustavo CorachDepartamento de Matemática
    FI-UBA, and IAM-CONICET
    Buenos Aires
    Argentina
    e-mail
  • Alejandra MaestripieriInstituto de Ciencias, UNGS
    San Miguel, Argentina
    e-mail
  • Demetrio StojanoffDepartamento de Matemática
    FCE-UNLP
    La Plata, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image