PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Bornes optimales pour la différence entre la hauteur de Weil et la hauteur de Néron–Tate sur les courbes elliptiques sur $\overline{\mathbb{Q}}$

Volume 160 / 2013

Peter Bruin Acta Arithmetica 160 (2013), 385-397 MSC: 11G05, 11G50, 11Y35. DOI: 10.4064/aa160-4-5

Abstract

We give an algorithm that, for an elliptic curve $E$ over $\overline{\mathbb Q}$ in Weierstraß form, computes the infimum and supremum of the difference between the naïve and canonical height functions on $E(\overline{\mathbb Q})$.

Authors

  • Peter BruinInstitut für Mathematik
    Universität Zürich
    Winterthurerstrasse 190
    CH-8057 Zürich, Schweiz
    and
    Mathematics Institute
    Zeeman Building
    University of Warwick
    Coventry CV4 7AL
    United Kingdom
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image