PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the concentration of certain additive functions

Volume 162 / 2014

Dimitris Koukoulopoulos Acta Arithmetica 162 (2014), 223-241 MSC: Primary 11N60, 11K65. DOI: 10.4064/aa162-3-2

Abstract

We study the concentration of the distribution of an additive function $f$ when the sequence of prime values of $f$ decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of $f(n)=\sum_{p|n}(\log p)^{-c}$ when $c>1$.

Authors

  • Dimitris KoukoulopoulosDépartement de Mathématiques et de Statistique
    Université de Montréal
    CP 6128 succ. Centre-Ville
    Montréal, Québec H3C 3J7, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image