PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The sum of divisors of a quadratic form

Volume 163 / 2014

Lilu Zhao Acta Arithmetica 163 (2014), 161-177 MSC: Primary 11P05; Secondary 11P32, 11P55. DOI: 10.4064/aa163-2-6


We study the sum $\tau$ of divisors of the quadratic form $m_1^2+m_2^2+m_3^2$. Let $$S_3(X)=\sum_{1\le m_1,m_2,m_3\le X}\tau(m_1^2+m_2^2+m_3^2).$$ We obtain the asymptotic formula $$S_3(X)=C_1X^3\log X+ C_2X^3+O(X^2\log^7 X),$$ where $C_1,C_2$ are two constants. This improves upon the error term $O_\varepsilon(X^{8/3+\varepsilon})$ obtained by Guo and Zhai (2012).


  • Lilu ZhaoSchool of Mathematics
    Hefei University of Technology
    Hefei 230009, People's Republic of China

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image