Stabilization in non-abelian Iwasawa theory
Volume 169 / 2015
Acta Arithmetica 169 (2015), 319-329
MSC: Primary 11R23; Secondary 11R29.
DOI: 10.4064/aa169-4-2
Abstract
Let $K/k$ be a $\mathbb {Z}_p$-extension of a number field $k$, and denote by $k_n$ its layers. We prove some stabilization properties for the orders and the $p$-ranks of the higher Iwasawa modules arising from the lower central series of the Galois group of the maximal unramified pro-$p$-extension of $K$ (resp. of the $k_n$).