A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On Grosswald’s conjecture on primitive roots

Volume 172 / 2016

Stephen D. Cohen, Tomás Oliveira e Silva, Tim Trudgian Acta Arithmetica 172 (2016), 263-270 MSC: Primary 11L40; Secondary 11A07. DOI: 10.4064/aa8109-12-2015 Published online: 16 December 2015

Abstract

Grosswald’s conjecture is that $g(p)$, the least primitive root modulo $p$, satisfies $g(p) \leq \sqrt{p} - 2$ for all $p>409$. We make progress towards this conjecture by proving that $g(p) \leq \sqrt{p} -2$ for all $409 < p < 2.5\times 10^{15}$ and for all $p > 3.38\times 10^{71}$.

Authors

  • Stephen D. CohenSchool of Mathematics and Statistics
    University of Glasgow
    Glasgow G12 8QW, Scotland
    e-mail
  • Tomás Oliveira e SilvaDepartamento de Electrónica,
    Telecomunicações e Informática
    Universidade de Aveiro
    3810-193 Aveiro, Portugal
    e-mail
  • Tim TrudgianMathematical Sciences Institute
    The Australian National University
    Canberra, ACT 2601, Australia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image