A+ CATEGORY SCIENTIFIC UNIT

# Publishing house / Journals and Serials / Acta Arithmetica / All issues

## Acta Arithmetica

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

## On the torsion of the Jacobians of the hyperelliptic curves $y^{2}=x^{n}+a$ and $y^{2}=x(x^{n}+a)$

### Volume 174 / 2016

Acta Arithmetica 174 (2016), 99-120 MSC: Primary 11G10, 11G20, 11G25; Secondary 11L05, 11L10. DOI: 10.4064/aa8141-3-2016 Published online: 22 June 2016

#### Abstract

Consider two families of hyperelliptic curves (over $\mathbb{Q}$), $C^{n,a}:y^{2}=x^{n}+a$ and $C_{n,a}:y^{2}=x(x^{n}+a)$, and their respective Jacobians $J^{n,a}$, $J_{n,a}$. We give a partial characterization of the torsion part of $J^{n,a}( \mathbb{Q})$ and $J_{n,a}( \mathbb{Q})$. More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of $n$ (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of $J_{8,a}( \mathbb{Q})$. Namely, we show that $J_{8,a}(\mathbb{Q})_{\rm tors} =J_{8,a}(\mathbb{Q})$. In addition, we characterize the torsion parts of $J_{p,a}( \mathbb{Q})$, where $p$ is an odd prime, and of $J^{n,a}( \mathbb{Q})$, where $n=4,6,8$.

The main ingredients in the proofs are explicit computations of zeta functions of the relevant curves, and applications of the Chebotarev Density Theorem.

#### Authors

• Tomasz JędrzejakInstitute of Mathematics
University of Szczecin
Wielkopolska 15
70-451 Szczecin, Poland
e-mail

## Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

## Rewrite code from the image 