PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Metric results on summatory arithmetic functions on Beatty sets

Volume 197 / 2021

Marc Technau, Agamemnon Zafeiropoulos Acta Arithmetica 197 (2021), 93-104 MSC: Primary 11B83; 11J83, 11K65. DOI: 10.4064/aa200128-10-6 Published online: 31 August 2020


Let $f\colon \mathbb N \rightarrow \mathbb C $ be an arithmetic function and consider the Beatty set $\mathcal{B} (\alpha ) = \{ \lfloor {n\alpha }\rfloor : n\in \mathbb N \}$ associated to a real number $\alpha $, where $\lfloor {\xi }\rfloor$ denotes the integer part of a real number $\xi $. We show that the asymptotic formula \[\biggl| \sum _{\substack { 1\leq m\leq x \\ m\in \mathcal{B} (\alpha ) }} f(m) - \frac {1}{\alpha } \sum _{1\leq m\leq x} f(m) \biggr|^2 \ll _{f,\alpha ,\varepsilon } (\log x) (\log \log x)^{3+\varepsilon } \sum _{1\leq m\leq x} | {f(m)}|^2 \] holds for almost all $\alpha \gt 1$ with respect to the Lebesgue measure. This significantly improves an earlier result due to Abercrombie, Banks, and Shparlinski. The proof uses a recent Fourier-analytic result of Lewko and Radziwiłł based on the classical Carleson–Hunt inequality.

Moreover, using a probabilistic argument, we establish the existence of functions $f\colon \mathbb N \to \{\pm 1\}$ for which the above error term is optimal up to logarithmic factors.


  • Marc TechnauInstitut für Analysis und Zahlentheorie
    TU Graz
    Kopernikusgasse 24/II
    8010 Graz, Austria
  • Agamemnon ZafeiropoulosDepartment of Mathematical Sciences
    Norwegian University of Science and Technology
    NO-7491 Trondheim, Norway

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image