PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On Landau–Siegel zeros and heights of singular moduli

Volume 201 / 2021

Christian Táfula Acta Arithmetica 201 (2021), 1-28 MSC: 11M20, 11G50, 11N37. DOI: 10.4064/aa191118-18-5 Published online: 28 October 2021


Let $\chi _D$ be the Dirichlet character associated to $\mathbb {Q}(\sqrt {D})$ where $D \lt 0$ is a fundamental discriminant. Improving Granville–Stark’s 2000 result, we show that \[ \frac {L’}{L}(1,\chi _D) = \frac {1}{6} \mathop {\rm ht}(j(\tau _D)) - \frac {1}{2}\log |D| + C + o_{D\to -\infty }(1), \] where $\tau _D = \frac 12(-\delta +\sqrt {D})$ for $D \equiv \delta \pmod {4}$ and $j(\cdot )$ is the $j$-invariant function with $C = -1.057770\ldots .$ Assuming the “uniform” $abc$-conjecture for number fields, we deduce that $L(\beta ,\chi _D)\ne 0$ with $\beta \geq 1 - \frac {\sqrt {5}\varphi + o(1)}{\log |D|}$ where $\varphi = (1+\sqrt {5})/2$, which we moreover improve for smooth $D$.


  • Christian TáfulaDépartment de Mathématiques et de Statistique
    Université de Montréal
    CP 6128, succ. Centre-Ville
    Montréal, QC H3C 3J7, Canada

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image