A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Note on the mean value of the Erdős–Hooley Delta-function

Volume 219 / 2025

Régis de la Bretèche, Gérald Tenenbaum Acta Arithmetica 219 (2025), 379-394 MSC: Primary 11N37; Secondary 11K65 DOI: 10.4064/aa250107-13-2 Published online: 2 July 2025

Abstract

For integer $n\geqslant 1$ and real $u$, let $\varDelta (n,u):=|\{d:d\,|\,n,\, \mathrm e ^u \lt d\leqslant \mathrm e ^{u+1}\}|$. The Erdős–Hooley Delta-function is then defined by $\varDelta (n):=\max_{u\in \mathbb R}\varDelta (n,u).$ We improve a recent upper bound for the mean value of this function by showing that, for large $x$, we have $$\sum _{n\leqslant x}\varDelta (n)\ll x(\log _2x)^{5/2}.$$

Authors

  • Régis de la BretècheUniversité Paris Cité, Sorbonne Université, CNRS
    Institut Universitaire de France
    Institut de Mathématiques de Jussieu – Paris Rive Gauche
    75013 Paris, France
    e-mail
  • Gérald TenenbaumInstitut Élie Cartan
    Université de Lorraine
    54506 Vandœuvre-lès-Nancy, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image