A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the expected number of roots of a random Dirichlet polynomial

Volume 220 / 2025

Marco Aymone, Caio Bueno Acta Arithmetica 220 (2025), 305-321 MSC: Primary 11C08; Secondary 11K99 DOI: 10.4064/aa240130-23-4 Published online: 26 September 2025

Abstract

Let $T \gt 0$ and consider the random Dirichlet polynomial $$S_T(t)=\mathrm{Re}\sum _{n\leq T} X_n n^{-1/2-it},$$ where $(X_n)_{n}$ are i.i.d. Gaussian random variables with mean $0$ and variance $1$. We prove that the expected number of roots of $S_T(t)$ in the dyadic interval $[T,2T]$, say $\mathbb E N(T)$, is approximately $2/\sqrt{3}$ times the number of zeros of the Riemann $\zeta $ function in the critical strip up to height $T$. Moreover, we also compute the expected number of zeros in the same dyadic interval of the $k$th derivative of $S_T(t)$. Our proof requires the best upper bounds for the Riemann $\zeta $ function known up to date, and also estimates for the $L^2$ averages of certain Dirichlet polynomials.

Authors

  • Marco AymoneDepartamento de Matemática
    Universidade Federal de Minas Gerais (UFMG)
    31270-901 Belo Horizonte, Brazil
    e-mail
  • Caio BuenoDepartamento de Matemática
    Universidade Federal de Minas Gerais (UFMG)
    31270-901 Belo Horizonte, Brazil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image