A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Arbitrarily long strings of consecutive primes in special sets

Volume 221 / 2025

Sai Sanjeev Balakrishnan, Félix Houde, Vahagn Hovhannisyan, Maryna Manskova, Yiqing Wang Acta Arithmetica 221 (2025), 1-35 MSC: Primary 11N05; Secondary 11N36 DOI: 10.4064/aa240201-25-5 Published online: 24 September 2025

Abstract

Let $F(x)$ be a function of the form $ \sum_{i=1}^r d_i x^{\rho_i}$, where $d_1,\ldots ,d_r\in \mathbb {R}$, $0 \leqslant \rho_1 \lt \cdots \lt \rho_r$, $\rho _r \notin \mathbb Z$, $\rho _i \in \mathbb R$ for $ 1 \leqslant i \leqslant r$ and $d_r\ne 0$. We prove that the sets of the form $\{ n \in \mathbb N: \{ F(n) \} \in U \}$ for any non-empty open set $U \subset [0,1)$ contain arbitrarily long strings of consecutive primes.

Authors

  • Sai Sanjeev BalakrishnanDepartment of Mathematics
    University of California, Berkeley
    Berkeley, CA 94720, USA
    e-mail
  • Félix HoudeDepartment of Mathematics and Statistics
    Concordia University
    Montréal, QC, Canada, H3G 1M8
    e-mail
  • Vahagn HovhannisyanFaculty of Mathematics and Mechanics
    Yerevan State University
    Yerevan, Armenia
    e-mail
  • Maryna ManskovaInstitute of Analysis and Number Theory
    Graz University of Technology
    8010 Graz, Austria
    e-mail
  • Yiqing WangDepartment of Mathematics
    University of Wisconsin-Madison
    Madison, WI 53706, USA
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image