Around Widder's characterization of the Laplace transform of an element of $L^{∞}(ℝ^{+})$

Volume 74 / 2000

Jan Kisyński Annales Polonici Mathematici 74 (2000), 161-200 DOI: 10.4064/ap-74-1-161-200


Let ϰ be a positive, continuous, submultiplicative function on $ℝ^{+}$ such that $lim_{t→∞} e^{-ωt}t^{-α}ϰ(t) = a$ for some ω ∈ ℝ, α ∈ $\overline{ℝ^{+}}$ and $a ∈ ℝ^{+}$. For every λ ∈ (ω,∞) let $ϕ_{λ}(t) =e^{-λt}$ for $t ∈ ℝ^{+}$. Let $L^{1}_{ϰ}(ℝ^{+})$ be the space of functions Lebesgue integrable on $ℝ^{+}$ with weight $ϰ$, and let E be a Banach space. Consider the map $ϕ_{•}: (ω,∞) ∋ λ → ϕ_{λ} ∈ L_{ϰ}^{1}(ℝ^{+})$. Theorem 5.1 of the present paper characterizes the range of the linear map $T → Tϕ_{•}$ defined on $L(L_{ϰ}^{1}(ℝ^{+});E)$, generalizing a result established by B. Hennig and F. Neubrander for $ϰ(t)=e^{ωt}$. If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder's characterization of the Laplace transform of a function in $L^{∞}(ℝ^{+})$. Some applications of Theorem 5.1 to the theory of one-parameter semigroups of operators are discussed. In particular a version of the Hille-Yosida generation theorem is deduced for $C_0$ semigroups $(S_t)_{t ∈ \overline{ℝ^{+}}}$ such that $sup_{t ∈ \overline{ℝ^{+}}} (ϰ(t))^{-1}∥ S_t∥ < ∞$.


  • Jan Kisyński

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image