Le grand théorème de Picard pour les multifonctions analytiques finies

Volume 77 / 2001

Bernard Aupetit, Mustapha Ech-Chérif El Kettani Annales Polonici Mathematici 77 (2001), 189-196 MSC: 32A12, 46Hxx, 47Axx. DOI: 10.4064/ap77-2-5

Abstract

Let $D$ be a domain of the complex plane containing the origin. The famous great theorem of Émile Picard asserts that if $h$ is holomorphic on $D\setminus\{ 0\} $, with an essential singularity at 0, then the image under $h$ of any pointed neighbourhood of 0 covers all the complex plane, with at most one exception. Introducing the concept of essential singularity for analytic multifunctions, we extend this theorem to a finite analytic multifunction $K$, of degree $N$, defined on $D\setminus\{ 0\}$. In this case $\bigcup _{0 < |\lambda |< r}K (\lambda )$ covers all the complex plane, with at most $2N-1$ exceptions. In particular, this theorem can be used in the case of $N\times N$ matrices whose entries are holomorphic on $D\setminus \{ 0\} $ with essential singularities at 0. In this case, if their spectra avoid $2N$ points on a pointed neighbourhood of 0, these spectra must be constant.

Authors

  • Bernard AupetitDépartement de mathématiques
    et de statistique
    Faculté des sciences et de génie
    Université Laval
    Québec, Canada, G1K 7P4
    e-mail
  • Mustapha Ech-Chérif El KettaniDépartement de mathématiques
    et informatique
    Faculté des sciences Dhar El-Mahraz
    B.P. 1796 Atlas
    Fès, Maroc
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image