Partial regularity of minimizers of quasiconvex integrals with subquadratic growth: the general case

Volume 77 / 2001

Menita Carozza, Giuseppe Mingione Annales Polonici Mathematici 77 (2001), 219-243 MSC: 49N60, 49N99, 35J45. DOI: 10.4064/ap77-3-3

Abstract

We prove partial regularity for minimizers of the functional $\int _{{\mit \Omega } }f(x, u(x), Du(x))\, dx$ where the integrand $f(x, u, \xi )$ is quasiconvex with subquadratic growth: $|f(x, u, \xi )| \leq L(1+|\xi |^p) $, $p<2$. We also obtain the same results for $\omega $-minimizers.

Authors

  • Menita CarozzaFacoltà di Scienze MM. FF. NN.
    Università del Sannio
    Via Port' Arsa 11
    82100 Benevento, Italy
    e-mail
  • Giuseppe MingioneDipartimento di Matematica
    Università
    Via d'Azeglio 85//A
    43100 Parma, Italy
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image