Loewner chains and quasiconformal extension of holomorphic mappings
Volume 81 / 2003
                    
                    
                        Annales Polonici Mathematici 81 (2003), 85-100                    
                                        
                        MSC: 32H02, 30C65.                    
                                        
                        DOI: 10.4064/ap81-1-8                    
                                    
                                                Abstract
Let $f(z,t)$ be a Loewner chain on the Euclidean unit ball ${B}$ in ${\mathbb C}^n$. Assume that $f(z)=f(z,0)$ is quasiconformal. We give a sufficient condition for $f$ to extend to a quasiconformal homeomorphism of ${\mathbb R}^{2n}$ onto itself.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            