A+ CATEGORY SCIENTIFIC UNIT

# Publishing house / Journals and Serials / Annales Polonici Mathematici / All issues

## Convolution theorems for starlike and convex functions in the unit disc

### Volume 84 / 2004

Annales Polonici Mathematici 84 (2004), 27-39 MSC: 30C45, 30C55. DOI: 10.4064/ap84-1-2

#### Abstract

Let ${\cal A}$ denote the space of all analytic functions in the unit disc ${\mit\Delta}$ with the normalization $f(0)=f'(0)-1=0$. For $\beta <1$, let $${\cal P}_{\beta}^0=\{f\in {\cal A}: \mathop{\rm Re}\nolimits f'(z)> \beta, \,z\in{\mit\Delta}\}.$$ For $\lambda > 0$, suppose that $\cal F$ denotes any one of the following classes of functions: \eqalign{M_{1,\lambda}^{(1)}&=\{f\in {\cal A}:\mathop{\rm Re}\nolimits\{ z(zf'(z))' '\}> -\lambda , \, z\in {\mit\Delta} \},\cr M_{1,\lambda}^{(2)}&=\{f\in {\cal A}:\mathop{\rm Re}\nolimits\{ z(z^2f' '(z))' '\}> -\lambda , \, z\in {\mit\Delta}\},\cr M_{1,\lambda}^{(3)}&=\{f\in {\cal A}: \mathop{\rm Re}\nolimits \{\textstyle\frac{1}{2}(z(z^2f'(z))' ')'-1 \}> -\lambda, \,z \in {\mit\Delta} \}.\cr} The main purpose of this paper is to find conditions on $\lambda$ and $\gamma$ so that each $f \in {\cal F}$ is in ${\cal S}_\gamma$ or ${\cal K}_\gamma$, $\gamma \in [0,1/2]$. Here ${\cal S}_\gamma$ and ${\cal K}_\gamma$ respectively denote the class of all starlike functions of order $\gamma$ and the class of all convex functions of order $\gamma$. As a consequence, we obtain a number of convolution theorems, namely the inclusions $M_{1,\alpha}*{\cal G} \subset {\cal S}_{\gamma }$ and $M_{1,\alpha}*{\cal G} \subset {\cal K}_{\gamma }$, where $\cal G$ is either ${\cal P}_{\beta}^0$ or $M_{1,\beta}$. Here $M_{1,\lambda}$ denotes the class of all functions $f$ in ${\cal A}$ such that $\mathop{\rm Re}\nolimits(zf' '(z))> -\lambda$ for $z\in{\mit\Delta}$.

#### Authors

• M. AnbuduraiDepartment of Mathematics
D.G. Vaishnav College
Chennai 600 106, India
e-mail
• R. ParvathamThe Ramanujan Institute
Chennai 600 005, India
• S. PonnusamyDepartment of Mathematics
Indian Institute of Technology