The Jacobian Conjecture for symmetric Drużkowski mappings

Volume 86 / 2005

Michiel de Bondt, Arno van den Essen Annales Polonici Mathematici 86 (2005), 43-46 MSC: 14R15, 14R10. DOI: 10.4064/ap86-1-5

Abstract

Let $k$ be an algebraically closed field of characteristic zero and $F:=x+(Ax)^{*d}:k^n\rightarrow k^n$ a Drużkowski mapping of degree $\geq 2$ with $\mathop {\rm det}\nolimits JF=1$. We classify all such mappings whose Jacobian matrix $JF$ is symmetric. It follows that the Jacobian Conjecture holds for these mappings.

Authors

  • Michiel de BondtDepartment of Mathematics
    Radboud University of Nijmegen
    Postbus 9010
    6500 GL Nijmegen, The Netherlands
    e-mail
  • Arno van den EssenDepartment of Mathematics
    Radboud University of Nijmegen
    Postbus 9010
    6500 GL Nijmegen, The Netherlands
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image