Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ${\Bbb R}^{n}$

Volume 86 / 2005

Laurent Gendre Annales Polonici Mathematici 86 (2005), 59-77 MSC: 41A17, 41A25, 32F45, 32U35, 32C25, 14H95, 14P10. DOI: 10.4064/ap86-1-7


We prove that every singular algebraic curve in $\mathbb{R}^{n} $ admits local tangential Markov inequalities at each of its points. More precisely, we show that the Markov exponent at a point of a real algebraic curve $A$ is less than or equal to twice the multiplicity of the smallest complex algebraic curve containing $A$.


  • Laurent GendreLaboratoire Émile Picard
    UMR 5580, UFR MIG
    Université Paul Sabatier
    118, route de Narbonne
    31 062 Toulouse Cedex 4, France

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image