A+ CATEGORY SCIENTIFIC UNIT

Convergence in capacity

Volume 93 / 2008

Pham Hoang Hiep Annales Polonici Mathematici 93 (2008), 91-99 MSC: Primary 32W20; Secondary 32U05. DOI: 10.4064/ap93-1-8

Abstract

We prove that if ${\mathcal E}({\mit \Omega })\ni u_j\to u\in {\mathcal E}({\mit \Omega })$ in $C_n$-capacity then $\mathop {\rm lim\, inf}_{j\to \infty }(dd^cu_j)^n\geq 1_{\{ u>-\infty \} }(dd^cu)^n$. This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.

Authors

  • Pham Hoang HiepDepartment of Mathematics
    Hanoi University of Education (Dai Hoc Su Pham HaNoi)
    Cau Giay, Hanoi, VietNam
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image