Solutions to a class of singular quasilinear elliptic equations

Volume 98 / 2010

Lin Wei, Zuodong Yang Annales Polonici Mathematici 98 (2010), 231-240 MSC: 35J05, 35J62. DOI: 10.4064/ap98-3-3

Abstract

We study the existence of positive solutions to $$ \cases{\mathop{\rm div} ({|\nabla{u}|^{p-2} \nabla{u}})+q(x)u^{-{\gamma}}=0&\hbox{on }{\mit\Omega},\cr u=0&\hbox{on }\partial{\mit\Omega},} $$ where ${\mit\Omega}$ is $\mathbb{R}^N$ or an unbounded domain, $q(x)$ is locally Hölder continuous on ${\mit\Omega}$ and $ p>1$, $\gamma>-(p-1)$.

Authors

  • Lin WeiInstitute of Mathematics
    School of Mathematics Science
    Nanjing Normal University
    Nanjing 210046, Jiangsu, China
    e-mail
  • Zuodong YangInstitute of Mathematics
    School of Mathematics Science
    Nanjing Normal University
    Nanjing 210046, Jiangsu, China
    and
    College of Zhongbei
    Nanjing Normal University
    Nanjing 210046, Jiangsu, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image