On the Existence of a Non-trivial Non-negative Global Radial Weak Solution to a Fractional Laplacian Problem with a Singular Potential

Volume 64 / 2016

Masoud Bayrami, Mahmoud Hesaaraki Bulletin Polish Acad. Sci. Math. 64 (2016), 175-183 MSC: Primary 35R11; Secondary 35B25. DOI: 10.4064/ba8070-9-2016 Published online: 10 October 2016

Abstract

We prove the existence of a non-trivial non-negative radial weak solution to the problem \begin{equation*} \begin{cases} (-\Delta) ^{\alpha} u+bu=\lambda \dfrac{u}{|x|^{2\alpha}} +|u|^{p-1}u+\mu |u|^{r-1}u & \mathrm{in} \ \mathbb{R}^N,\\ \lim\limits_{|x| \to \infty} u(x) = 0. \end{cases} \end{equation*} Here $N \gt 2\alpha $, $ \alpha \in ({1}/{2},1)$, $1 \lt r \lt p \lt \frac{N+2\alpha}{N-2\alpha}$ and $\mu \in \mathbb{R}$. We also assume that $b \gt 0$ and $ 0 \lt \lambda \lt 4^\alpha \frac{\Gamma^2(\frac{N+2\alpha}4)}{\Gamma^2(\frac{N-2\alpha}4)}$.

Authors

  • Masoud BayramiDepartment of Mathematical Sciences
    Sharif University of Technology
    P.O. Box 11365-9415, Tehran, Iran
    e-mail
  • Mahmoud HesaarakiDepartment of Mathematical Sciences
    Sharif University of Technology
    P.O. Box 11365-9415, Tehran, Iran
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image