The prevalence of permutations with infinite cycles

Volume 144 / 1994

Randall Dougherty, Jan Mycielski Fundamenta Mathematicae 144 (1994), 89-94 DOI: 10.4064/fm_1994_144_1_1_89_94


A number of recent papers have been devoted to the study of prevalence, a generalization of the property of being of full Haar measure to topological groups which need not have a Haar measure, and the dual concept of shyness. These concepts give a notion of "largeness" which often differs from the category analogue, comeagerness, and may be closer to the intuitive notion of "almost everywhere." In this paper, we consider the group of permutations of natural numbers. Here, in the sense of category, "almost all" permutations have only finite cycles. In contrast, we show that, in terms of prevalence, "almost all" permutations have infinitely many infinite cycles and only finitely many finite cycles; this set of permutations comprises countably many conjugacy classes, each of which is non-shy.


  • Randall Dougherty
  • Jan Mycielski

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image