Gδ -sets in topological spaces and games

Volume 153 / 1997

Just Winfried, Marion Sheepers, Juris Steprans, Paul Szeptycki Fundamenta Mathematicae 153 (1997), 41-58 DOI: 10.4064/fm-153-1-41-58


Players ONE and TWO play the following game: In the nth inning ONE chooses a set $O_n$ from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset $T_n$ of X. The players must obey the rule that $O_n ⊆ O_{n+1} ⊆ T_{n+1} ⊆ T_n$ for each n. TWO wins if the intersection of TWO's sets is equal to the union of ONE's sets. If ONE has no winning strategy, then each element of ℱ is a $G_δ$-set. To what extent is the converse true? We show that:  (A) For ℱ the collection of countable subsets of X:   1. There are subsets of the real line for which neither player has a winning strategy in this game.   2. The statement "If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a $G_δ$-set" is independent of the axioms of classical mathematics.   3. There are spaces whose countable subsets are $G_δ$-sets, and yet ONE has a winning strategy in this game.   4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.  (B) For ℱ the collection of $G_σ$-subsets of a subset X of the real line the determinacy of this game is independent of ZFC.


  • Just Winfried
  • Marion Sheepers
  • Juris Steprans
  • Paul Szeptycki

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image