Sur les rétractes absolus $P_n$ -valués de dimension finie
Volume 158 / 1998
                    
                    
                        Fundamenta Mathematicae 158 (1998), 241-248                    
                                        
                        DOI: 10.4064/fm-158-3-241-248                    
                                    
                                                Abstract
We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a $P_k$-valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            