Some remarks on Radon–Nikodym compact spaces

Volume 172 / 2002

Alexander D. Arvanitakis Fundamenta Mathematicae 172 (2002), 41-60 MSC: Primary 46B22, 46B26; Secondary 54G12. DOI: 10.4064/fm172-1-4


The class of quasi Radon–Nikodým compact spaces is introduced. We prove that this class is closed under countable products and continuous images. It includes the Radon–Nikodým compact spaces. Adapting Alster's proof we show that every quasi Radon–Nikodým and Corson compact space is Eberlein. This generalizes earlier results by J. Orihuela, W. Schachermayer, M. Valdivia and C. Stegall. Further the class of almost totally disconnected spaces is defined and it is shown that every quasi Radon–Nikodým space which is almost totally disconnected is actually a Radon–Nikodým compact space embeddable in the space of probability measures on a scattered compact space.


  • Alexander D. ArvanitakisDepartment of Mathematics
    University of Athens
    15784 Panepistimiopolis, Athens, Greece

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image