Symplectic groups are $N$-determined 2-compact groups

Volume 192 / 2006

Aleš Vavpetič, Antonio Viruel Fundamenta Mathematicae 192 (2006), 121-139 MSC: Primary 55R35; Secondary 55R15. DOI: 10.4064/fm192-2-3

Abstract

We show that for $n\ge 3$ the symplectic group $Sp(n)$ is as a $2$-compact group determined up to isomorphism by the isomorphism type of its maximal torus normalizer. This allows us to determine the integral homotopy type of $Sp(n)$ among connected finite loop spaces with maximal torus.

Authors

  • Aleš VavpetičFakulteta za Matematiko in Fiziko
    Univerza v Ljubljani
    Jadranska 19
    SI-1111 Ljubljana, Slovenia
    e-mail
  • Antonio ViruelDpto de de l'Algebra, Geometría y Topología
    Universidad de Málaga
    Apdo Correos 59
    29080 Málaga, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image