On the connectivity of finite subset spaces

Volume 217 / 2012

Jacob Mostovoy, Rustam Sadykov Fundamenta Mathematicae 217 (2012), 279-282 MSC: Primary 55P65. DOI: 10.4064/fm217-3-6

Abstract

We prove that the space $\exp_k \bigvee S^{m+1}$ of nonempty subsets of cardinality at most $k$ in a bouquet of $m+1$-dimensional spheres is $(m+k-2)$-connected. This, as shown by Tuffley, implies that the space $\exp_k X$ is $(m+k-2)$-connected for any $m$-connected cell complex $X$.

Authors

  • Jacob MostovoyDepartamento de Matemáticas
    CINVESTAV-IPN
    Av. Instituto Politécnico Nacional 2508
    Col. San Pedro Zacatenco
    México, D.F., C.P. 07360, Mexico
    e-mail
  • Rustam SadykovDepartamento de Matemáticas
    CINVESTAV-IPN
    Av. Instituto Politécnico Nacional 2508
    Col. San Pedro Zacatenco
    México, D.F., C.P. 07360, Mexico
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image