PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Eckardt surfaces

Volume 243 / 2018

Brenda Leticia De La Rosa-Navarro, Gioia Failla, Juan Bosco Frías-Medina, Mustapha Lahyane, Rosanna Utano Fundamenta Mathematicae 243 (2018), 195-208 MSC: Primary 14C20; Secondary 14C22. DOI: 10.4064/fm424-12-2017 Published online: 28 June 2018


Effective construction of some Eckardt surfaces is given. In particular, not only their Picard number may be big but also an anticanonical divisor may have a very large number of irreducible components. Furthermore, the question about goodness position of the points over which these surfaces are built is handled.


  • Brenda Leticia De La Rosa-NavarroFacultad de Ciencias
    Universidad Autónoma de Baja California
    Km. 103 Carretera Tijuana – Ensenada
    C.P. 22860
    Ensenada, Baja California, Mexico
  • Gioia FaillaDipartimento DIIES
    Università Mediterranea di Reggio Calabria
    Via Graziella
    Feo di Vito, 89124 Reggio Calabria, Italy
  • Juan Bosco Frías-MedinaU. A. Matemáticas
    Universidad Autónoma de Zacatecas
    Czda. Solidaridad entronque Paseo a la Bufa
    C.P. 98000
    Zacatecas, Zac., Mexico
  • Mustapha LahyaneInstituto de Física y Matemáticas (IFM)
    Universidad Michoacana
    de San Nicolás de Hidalgo
    Edificio C-3
    Ciudad Universitaria, C.P. 58040
    Morelia, Michoacán, Mexico
  • Rosanna UtanoDipartimento di Scienze Matematiche e Informatiche
    Scienze Fisiche e Scienze della Terra
    Università di Messina
    Viale Ferdinando Stagno D’Alcontres, 31
    98166 Messina, Italy

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image