PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Monotone normality and nabla products

Volume 254 / 2021

Hector A. Barriga-Acosta, Paul M. Gartside Fundamenta Mathematicae 254 (2021), 99-120 MSC: Primary 03E75, 54A35, 54B10, 54D15, 54D20; Secondary 54A25, 54B99, 54G20, 54G99. DOI: 10.4064/fm926-10-2020 Published online: 23 December 2020


Roitman’s combinatorial principle $\Delta $ is equivalent to monotone normality of the nabla product, $\nabla (\omega +1)^\omega $. If $\{ X_n : n\in \omega \}$ is a family of metrizable spaces and $\nabla _n X_n$ is monotonically normal, then $\nabla _n X_n$ is hereditarily paracompact. Hence, if $\Delta $ holds then the box product $\square (\omega +1)^\omega $ is paracompact. Large fragments of $\Delta $ hold in $\mathsf {ZFC}$, yielding large subspaces of $\nabla (\omega +1)^\omega $ that are ‘really’ monotonically normal. Countable nabla products of metrizable spaces which are respectively: arbitrary, of size $\le \mathfrak {c}$, or separable, are monotonically normal under respectively: $\mathfrak {b}=\mathfrak {d}$, $\mathfrak {d}=\mathfrak {c}$ or the Model Hypothesis.

It is consistent and independent that $\nabla A(\omega _1)^\omega $ and $\nabla (\omega _1+1)^\omega $ are hereditarily normal (or hereditarily paracompact, or monotonically normal). In $\mathsf {ZFC}$ neither $\nabla A(\omega _2)^\omega $ nor $\nabla (\omega _2+1)^\omega $ is hereditarily normal.


  • Hector A. Barriga-AcostaPosgrado Conjunto en Ciencias Matemáticas
    Morelia, Mexico
  • Paul M. GartsideDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA, U.S.A.

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image