A+ CATEGORY SCIENTIFIC UNIT

Forcing properties of Boolean algebras of the type $\mathcal P(\omega )/\mathcal I$

Gabriela Campero-Arena, Osvaldo Guzmán-González, Michael Hrušák, David Meza-Alcántara Fundamenta Mathematicae MSC: Primary 03G05; Secondary 03E40, 03E17, 03E15 DOI: 10.4064/fm230213-20-10 Published online: 16 December 2025

Abstract

We study forcing properties of the Boolean algebras $\mathcal {P}(\omega )/\mathcal {I}$, where $\mathcal {I}$ is a Borel ideal on $\omega $. We show (Theorem 2.12) that (under a large cardinal hypothesis) $\mathcal {P}(\omega )/\mathcal {I}$ does not add reals if and only if it has a dense $\sigma $-closed subset. For analytic P-ideals $\mathcal {I}$ we show (Theorem 3.3) that either $\mathcal {P}(\omega )/\mathcal {I}$ is $\omega ^{\omega }$-bounding or it is not proper. We also investigate the existence of completely separable $\mathcal {I}$-MAD families.

Authors

  • Gabriela Campero-ArenaDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Circuito Exterior s/n
    Ciudad Universitaria, CDMX, 04510, México
    e-mail
  • Osvaldo Guzmán-GonzálezCentro de Ciencias Matemáticas
    Universidad Nacional Autónoma de México
    Morelia, 58089, México
    e-mail
  • Michael HrušákCentro de Ciencias Matemáticas
    Universidad Nacional Autónoma de México
    Morelia, 58089, México
    e-mail
  • David Meza-AlcántaraDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Circuito Exterior S/N
    Ciudad Universitaria, CDMX, 04510, México
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image