PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Rosenthal compacta that are premetric of finite degree

Volume 239 / 2017

Antonio Avilés, Alejandro Poveda, Stevo Todorcevic Fundamenta Mathematicae 239 (2017), 259-278 MSC: 26A21, 54H05, 54D30, 05D10. DOI: 10.4064/fm333-12-2016 Published online: 5 June 2017

Abstract

We show that if a separable Rosenthal compactum $K$ is a continuous $n$-to-one preimage of a metric compactum, but it is not a continuous $n-1$-to-one preimage, then $K$ contains a closed subset homeomorphic to either the $n$-split interval $S_n(I)$ or the Alexandroff $n$-plicate $D_n(2^{\mathbb N})$. This generalizes a result of the third author that corresponds to the case $n=2$.

Authors

  • Antonio AvilésDepartamento de Matemáticas
    Universidad de Murcia
    30100 Murcia, Spain
    e-mail
  • Alejandro PovedaDepartament de Matemàtiques i Informàtica
    Universitat de Barcelona
    Gran Via de les Corts Catalanes 585
    08007 Barcelona, Spain
    e-mail
  • Stevo TodorcevicDepartment of Mathematics
    University of Toronto
    M5S 3G3 Toronto, Canada
    and
    Institut de Mathématiques de Jussieu
    CNRS UMR 7586 Case 247
    4 Place Jussieu
    75252 Paris, France
    e-mail
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image