Local dual spaces of a Banach space

Volume 147 / 2001

Manuel González, Antonio Martínez-Abejón Studia Mathematica 147 (2001), 155-168 MSC: Primary 46B10, 46B20; Secondary 46B04, 46B08. DOI: 10.4064/sm147-2-4

Abstract

We study the local dual spaces of a Banach space $X$, which can be described as the subspaces of $X^*$ that have the properties that the principle of local reflexivity attributes to $X$ as a subspace of $X^{**}$.

We give several characterizations of local dual spaces, which allow us to show many examples. Moreover, every separable space $X$ has a separable local dual $Z$, and we can choose $Z$ with the metric approximation property if $X$ has it. We also show that a separable space containing no copies of $\ell _1$ admits a smallest local dual.

Authors

  • Manuel GonzálezDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad de Cantabria
    E-39071 Santander, Spain
    e-mail
  • Antonio Martínez-AbejónDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad de Oviedo
    E-33007 Oviedo, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image