Fredholm spectrum and growth of cohomology groups
Volume 186 / 2008
                    
                    
                        Studia Mathematica 186 (2008), 237-249                    
                                        
                        MSC: Primary 47A13; Secondary 47A53, 13D40, 32C35.                    
                                        
                        DOI: 10.4064/sm186-3-3                    
                                    
                                                Abstract
Let $T \in L(E)^n$ be a commuting tuple of bounded linear operators on a complex Banach space $E$ and let $\sigma_{\rm F}(T) = \sigma(T) \setminus \sigma_{\rm e}(T)$ be the non-essential spectrum of $T$. We show that, for each connected component $M$ of the manifold ${\rm Reg}(\sigma_{\rm F}(T))$ of all smooth points of $\sigma_{\rm F}(T)$, there is a number $p \in \{0, \ldots , n \}$ such that, for each point $z \in M$, the dimensions of the cohomology groups $H^p ( (z - T)^k,E )$ grow at least like the sequence $(k^d)_{k \geq 1}$ with $d = \dim M.$
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            