Commutators on $(\sum \ell_q)_p$

Volume 206 / 2011

Dongyang Chen, William B. Johnson, Bentuo Zheng Studia Mathematica 206 (2011), 175-190 MSC: Primary 47B47; Secondary 46B20. DOI: 10.4064/sm206-2-5


Let $T$ be a bounded linear operator on $X=(\sum \ell_{q})_{{p}}$ with $1\le q < \infty$ and $1< p< \infty$. Then $T$ is a commutator if and only if for all non-zero $\lambda\in \mathbb{C}$, the operator $T-\lambda I$ is not $X$-strictly singular.


  • Dongyang ChenSchool of Mathematical Sciences
    Xiamen University
    Xiamen, 361005, China
  • William B. JohnsonDepartment of Mathematics
    Texas A&M University
    College Station, TX 77843, U.S.A.
  • Bentuo ZhengDepartment of Mathematical Sciences
    The University of Memphis
    Memphis, TN 38152, U.S.A.

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image