Finite generation in $C^\ast $-algebras and Hilbert $C^\ast $-modules
Volume 224 / 2014
                    
                    
                        Studia Mathematica 224 (2014), 143-151                    
                                        
                        MSC: Primary 46L05, 46L08, 46H25; Secondary 46H10, 16D60, 16D25.                    
                                        
                        DOI: 10.4064/sm224-2-3                    
                                    
                                                Abstract
We characterize $C^*$-algebras and $C^*$-modules such that every maximal right ideal (resp. right submodule) is algebraically finitely generated. In particular, $C^*$-algebras satisfy the Dales–Żelazko conjecture.