PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Exact Hausdorff and packing measures for random self-similar code-trees with necks

Volume 257 / 2021

Sascha Troscheit Studia Mathematica 257 (2021), 253-285 MSC: Primary 28A78; Secondary 28A80, 37C45, 60J80. DOI: 10.4064/sm190327-26-8 Published online: 21 December 2020


Random code-trees with necks were introduced recently to generalise the notion of $V$-variable and random homogeneous sets. While it is known that the Hausdorff and packing dimensions coincide irrespective of overlaps, their exact Hausdorff and packing measures have so far been largely ignored. In this article we consider the general question of an appropriate gauge function for positive and finite Hausdorff and packing measures. We first survey the current state of knowledge and establish some bounds on these gauge functions. We then show that self-similar code-trees do not admit gauge functions that simultaneously give positive and finite Hausdorff measure almost surely. This surprising result is in stark contrast to the random recursive model and sheds some light on the question of whether $V$-variable sets interpolate between random homogeneous and random recursive sets. We conclude by discussing implications of our results.


  • Sascha TroscheitFaculty of Mathematics
    University of Vienna
    Oskar-Morgenstern-Platz 1
    1090 Wien, Austria

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image