PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Metric characterization of the sum of fractional Sobolev spaces

Volume 258 / 2021

Rémy Rodiac, Jean Van Schaftingen Studia Mathematica 258 (2021), 27-51 MSC: Primary 46E35. DOI: 10.4064/sm190408-21-4 Published online: 3 November 2020

Abstract

We introduce a non-linear criterion which allows us to determine when a function can be written as a sum of functions belonging to homogeneous fractional spaces: for $\ell \in \mathbb {N}^*$, $s_i\in (0, 1)$ and $p_i \in [1, +\infty )$, $u : \Omega \to \mathbb {R}$ can be decomposed as $u = u_1+\cdots +u_\ell $ with $u_i \in \dot {W}^{s_i,p_i}(\Omega )$ if and only if $$ \iint _{\Omega \times \Omega } \min _{1 \le i \le \ell } \frac {|u (x) - u (y)|^{p_i}}{|x - y|^{n+s_ip_i}}\,\mathrm {d}x \,\mathrm {d}y \lt +\infty . $$

Authors

  • Rémy RodiacLaboratoire de Mathématiques d’Orsay
    Université Paris-Saclay, CNRS
    91405 Orsay, France
    e-mail
  • Jean Van SchaftingenInstitut de Recherche en Mathématique et Physique
    Université catholique de Louvain
    Chemin du Cyclotron 2, bte L7.01.01
    1348 Louvain-la-Neuve, Belgium
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image