A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Atomic decompositions for Hardy spaces related to Schrödinger operators

Volume 239 / 2017

Marcin Preisner Studia Mathematica 239 (2017), 101-122 MSC: Primary 42B30, 35J10; Secondary 42B25, 42B35. DOI: 10.4064/sm8338-2-2017 Published online: 23 June 2017

Abstract

Let $\mathbf {L}^{U}= -\boldsymbol \Delta +U$ be a Schrödinger operator on ${\mathbb {R}^d}$, where $U\in L^1_{\rm loc}({\mathbb {R}^d})$ is a non-negative potential and $d\geq 3$. The Hardy space $H^1(\mathbf {L}^{U})$ is defined in terms of the maximal function of the semigroup $\mathbf {K}_{t}^{U} = \exp(-t\mathbf {L}^{U})$, namely $$H^1(\mathbf {L}^{U}) = \left \{f\in {L^1({\mathbb {R}^d})}:\| f \| _{H^1(\mathbf {L}^{U})}:= \left \| \sup_{t \gt 0} | \mathbf {K}_{t}^{U}f | \right\|_{L^1({\mathbb {R}^d})} \lt \infty \right\}.$$ Assume that $U=V+W$, where $V\geq 0$ satisfies the global Kato condition $$\sup_{x\in {\mathbb {R}^d}} \int _{{\mathbb {R}^d}} V(y)|x-y|^{2-d} \,dy \lt \infty .$$ We prove that, under certain assumptions on $W\geq 0$, the space $H^1(\mathbf {L}^{U})$ admits an atomic decomposition of local type. An atom $a$ for $H^1(\mathbf {L}^{U})$ either is of the form $a(x)=|Q|^{-1}\chi _Q(x)$, where $Q$ are special cubes determined by $W$, or satisfies the cancellation condition $\int _{\mathbb {R}^d}a(x)\omega (x)\, dx=0$, where $\omega $ is given by $\omega (x) = \lim_{t\to \infty } \mathbf {K}_{t}^{V}\mathbf {1}(x)$. Furthermore, we show that, in some cases, the above cancellation condition can be replaced by $\int _{\mathbb {R}^d}a(x)\, dx = 0$. However, we construct an example where the atomic spaces with these two cancellation conditions are not equivalent as Banach spaces.

Authors

  • Marcin Preisner

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image