On wings of the Auslander–Reiten quivers of selfinjective algebras
Volume 103 / 2005
Colloquium Mathematicum 103 (2005), 265-285
MSC: 16D50, 16G10, 16G70.
DOI: 10.4064/cm103-2-11
Abstract
We give necessary and sufficient conditions for a wing of an Auslander–Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length $\geq3$ is obtained.