A+ CATEGORY SCIENTIFIC UNIT

Laura algebras and quasi-directed components

Volume 105 / 2006

Marcelo Lanzilotta, David Smith Colloquium Mathematicum 105 (2006), 179-196 MSC: 16G70, 16G10, 18G05, 16E10. DOI: 10.4064/cm105-2-2

Abstract

Using a notion of distance between indecomposable modules we deduce new characterizations of laura algebras and quasi-directed Auslander-Reiten components. Afterwards, we investigate the infinite radical of Artin algebras and show that there exist infinitely many non-directing modules between two indecomposable modules $X$ and $Y$ if $\mathop{\rm rad}_{A}^{\infty}(X,Y)\neq 0$. We draw as inference that a convex component is quasi-directed if and only if it is almost directed.

Authors

  • Marcelo LanzilottaCentro de Matemática (CMAT), Iguá 4225
    Universidad de la República
    CP 11400, Montevideo, Uruguay
    e-mail
  • David SmithDépartement de Mathématiques
    Université de Sherbrooke
    2500, boul. de l'Université
    Sherbrooke, Québec, Canada, J1K 2R1
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image