Riesz meets Sobolev

Volume 118 / 2010

Thierry Coulhon, Adam Sikora Colloquium Mathematicum 118 (2010), 685-704 MSC: 58J35, 42B20, 46E35. DOI: 10.4064/cm118-2-20

Abstract

We show that the $L^p$ boundedness, $p>2$, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.

Authors

  • Thierry CoulhonDépartement de Mathématiques
    Université de Cergy-Pontoise
    Site de Saint-Martin
    2, rue Adolphe Chauvin
    F-95302 Cergy-Pontoise Cedex, France
    e-mail
  • Adam SikoraDepartment of Mathematics
    Macquarie University
    Sydney, NSW 2109, Australia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image