Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$

Volume 133 / 2013

David J. Platt, Sumaia Saad Eddin Colloquium Mathematicum 133 (2013), 23-34 MSC: Primary 11M06; Secondary 11Y35. DOI: 10.4064/cm133-1-2

Abstract

Let $\chi $ be a primitive Dirichlet character of conductor $q$ and denote by $L(z, \chi )$ the associated $L$-series. We provide an explicit upper bound for $|L(1, \chi )|$ when $3$ divides $q$.

Authors

  • David J. PlattHeilbronn Institute
    for Mathematical Research
    University of Bristol
    University Walk
    Bristol, BS8 1TW, United Kingdom
    e-mail
  • Sumaia Saad EddinLaboratoire Paul Painlevé
    Université des Sciences et Technologies de Lille
    Bâtiment M2, Cité Scientifique
    59655 Villeneuve d'Ascq Cédex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image