A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Solyanik estimates in ergodic theory

Volume 145 / 2016

Paul Hagelstein, Ioannis Parissis Colloquium Mathematicum 145 (2016), 193-207 MSC: Primary 37A45; Secondary 42B25. DOI: 10.4064/cm6729-2-2016 Published online: 3 June 2016

Abstract

Let $U_1, \ldots, U_n$ be a collection of commuting measure preserving transformations on a probability space $(\varOmega, \varSigma, \mu)$. Associated with these transformations is the ergodic strong maximal operator $\mathsf M _{\mathsf S} ^*$ given by $$ \mathsf M _{\mathsf S} ^* f(\omega) := \sup_{0 \in R \subset \mathbb{R}^n}\frac{1}{\#(R \cap \mathbb{Z}^n)}\sum_{(j_1, \ldots, j_n) \in R\cap \mathbb{Z}^n}|f(U_1^{j_1}\cdots U_n^{j_n}\omega)|, $$ where the supremum is taken over all open rectangles in $\mathbb{R}^n$ containing the origin whose sides are parallel to the coordinate axes. For $0 \lt \alpha \lt 1$ we define the sharp Tauberian constant of $\mathsf M _{\mathsf S} ^*$ with respect to $\alpha$ by $$ \mathsf C^* _{\mathsf S} (\alpha) := \sup_{\substack{E \subset \varOmega \\ \mu(E) \gt 0}}\frac{1}{\mu(E)}\mu(\{\omega \in \varOmega : \mathsf M _{\mathsf S} ^* \chi_E (\omega) \gt \alpha\}). $$ Motivated by previous work of A. A. Solyanik and the authors regarding Solyanik estimates for the geometric strong maximal operator in harmonic analysis, we show that the Solyanik estimate $$ \lim_{\alpha \rightarrow 1}\mathsf C^* _{\mathsf S}(\alpha) = 1 $$ holds, and that in particular \[\mathsf C^* _{\mathsf S}(\alpha) - 1 \lesssim_n ({1}/{\alpha} - 1)^{1/n}\] provided that $\alpha$ is sufficiently close to $1$. Solyanik estimates for centered and uncentered ergodic Hardy–Littlewood maximal operators associated with $U_1, \ldots, U_n$ are shown to hold as well. Further directions for research in the field of ergodic Solyanik estimates are also discussed.

Authors

  • Paul HagelsteinDepartment of Mathematics
    Baylor University
    Waco, TX 76798, U.S.A.
    e-mail
  • Ioannis ParissisDepartamento de Matemáticas
    Universidad del Pais Vasco
    Aptdo. 644
    48080 Bilbao, Spain
    and
    Ikerbasque
    Basque Foundation for Science
    Bilbao, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image